1. If $XM = 4$, $XN = 6$, and $NZ = 9$, find XY.

SOLUTION:
Triangle Proportionality Theorem:
If a line is parallel to one side of a triangle and intersects the other two sides, then it divides the sides into segments of proportional lengths.

Use the Triangle Proportionality Theorem.

\[
\frac{XM}{MY} = \frac{XN}{NZ}
\]

Substitute.

\[
\frac{4}{MY} = \frac{6}{9}
\]

Solve for MY.

\[
MY = \frac{36}{6} = 6
\]

Find XY.

\[
XY = XM + MY = 4 + 6 = 10
\]

ANSWER: 10

2. If $XN = 6$, $XM = 2$, and $XY = 10$, find NZ.

SOLUTION:
Triangle Proportionality Theorem:
If a line is parallel to one side of a triangle and intersects the other two sides, then it divides the sides into segments of proportional lengths.

\[
XY = 10, \text{ So, } MY = 10 - 8 = 2.
\]

Use the Triangle Proportionality Theorem.

\[
\frac{2}{8} = \frac{6}{NZ}
\]

Solve for NZ.

\[
NZ = \frac{48}{2} = 24
\]

ANSWER: 24
3. In \(\triangle ABC \), \(BC = 15 \), \(BE = 6 \), \(DC = 12 \), and \(AD = 8 \). Determine whether \(DE \parallel AB \). Justify your answer.

SOLUTION:

If \(BC = 15 \), then \(EC = 15 - 6 = 9 \).

Use the Converse of the Triangle Proportionality Theorem.

\[
\frac{AD}{DC} = \frac{8}{12} = \frac{2}{3}
\]

\[
\frac{BE}{EC} = \frac{6}{9} = \frac{2}{3}
\]

So, \(\frac{AD}{DC} = \frac{BE}{EC} = \frac{2}{3} \)

Therefore, \(DE \parallel AB \).

ANSWER:

yes; \(\frac{AD}{DC} = \frac{BE}{EC} = \frac{2}{3} \), so \(DE \parallel AB \).

4. In \(\triangle JKL \), \(JK = 15 \), \(JM = 5 \), \(LK = 13 \), and \(PK = 9 \). Determine whether \(JL \parallel MP \). Justify your answer.

SOLUTION:

If \(BC = 15 \), then \(EC = 15 - 6 = 9 \).

Use the Converse of the Triangle Proportionality Theorem.

\[
\frac{JM}{MK} = \frac{5}{10} = \frac{1}{2}
\]

\[
\frac{LP}{PK} = \frac{4}{9}
\]

\[
\frac{1}{2} \neq \frac{4}{9}
\]

So, \(JL \) and \(MP \) are not parallel.

ANSWER:

no; \(\frac{1}{2} \neq \frac{4}{9} \)
5. \(JH \) is a midsegment of \(\triangle KLM \). Find the value of \(x \).

\[
\begin{align*}
\triangle KLM \quad &\quad JH \quad \text{midsegment} \\
&\quad \text{substitute} \\
&\quad x = \frac{1}{2}(22) \\
&\quad x = 11
\end{align*}
\]

ANSWER:
11

6. \(JH \) is a midsegment of \(\triangle KLM \). Find the value of \(x \).

\[
\begin{align*}
\triangle KLM \quad &\quad JH \quad \text{midsegment} \\
&\quad \text{substitute} \\
&\quad 5 = \frac{1}{2}x \\
&\quad x = 10
\end{align*}
\]

ANSWER:
10

7. **MAPS** Refer to the map. 3rd Avenue and 5th Avenue are parallel. If the distance from 3rd Avenue to City Mall along State Street is 3201 feet, find the distance between 5th Avenue and City Mall along Union Street. Round to the nearest tenth.

\[
\begin{align*}
\text{Distance between 3rd and 5th Ave:} &\quad 3201 \\
\text{Distance between City Mall:} &\quad 2360.3 \text{ ft}
\end{align*}
\]

SOLUTION:
The distance between 5th Avenue and City Mall along State Street is 3201 feet. Let \(x \) be the distance between 5th Avenue and City Mall along Union Street.

Use the Triangle Proportionality Theorem.

\[
\begin{align*}
\frac{1056}{2145} = \frac{1162}{x} \\
x \approx 2360.3
\end{align*}
\]

The distance between 5th Avenue and City Mall along Union Street is 2360.3 ft.

ANSWER:
2360.3 ft
7-4 Parallel Lines and Proportional Parts

ALGEBRA Find \(x\) and \(y\).

8. \[
\begin{align*}
\frac{1}{2}y + 20 &= 3y + 20 - 3x \\
2x - 5 &= 2y - 5
\end{align*}
\]

SOLUTION:
We are given that \(3y = \frac{1}{2}y + 20\) and \(2x - 5 = 20 - 3x\).

Solve for \(x\).
\[
\begin{align*}
2x - 5 &= 20 - 3x \\
5x &= 25 \\
x &= 5
\end{align*}
\]

Solve for \(y\).
\[
\begin{align*}
3y &= \frac{1}{2}y + 20 \\
3y - \frac{1}{2}y &= 20 \\
2\left(3y - \frac{1}{2}y\right) &= 2(20) \\
6y - y &= 40 \\
5y &= 40 \\
y &= 8
\end{align*}
\]

ANSWER:
\(x = 5; y = 8\)

9. \[
\begin{align*}
12 - 3y &= 16 - 5y \\
16 - 5y &= 2x - 29 \\
\frac{1}{4}x + 6 &= \frac{1}{4}x + 6
\end{align*}
\]

SOLUTION:
We are given that \(12 - 3y = 16 - 5y\).

Solve for \(y\).
\[
\begin{align*}
12 - 3y &= 16 - 5y \\
12 + 2y &= 16 \\
2y &= 4 \\
y &= 2
\end{align*}
\]

By Corollary 7.2, \(2x - 29 = \frac{1}{4}x + 6\).

Solve for \(x\).
\[
\begin{align*}
2x - 29 &= \frac{1}{4}x + 6 \\
2x &= \frac{1}{4}x + 35 \\
2x - \frac{1}{4}x &= 35 \\
4\left(2x - \frac{1}{4}x\right) &= 4(35) \\
8x - x &= 140 \\
7x &= 140 \\
x &= 20
\end{align*}
\]

ANSWER:
\(x = 20; y = 2\)
10. If \(AB = 6 \), \(BC = 4 \), and \(AE = 9 \), find \(ED \).

\[\frac{AB}{BC} = \frac{AE}{ED} \]

Substitute.
\[\frac{6}{4} = \frac{9}{ED} \]

Solve for \(ED \).
\[ED = \frac{36}{6} = 6 \]

ANSWER: 6

11. If \(AB = 12 \), \(AC = 16 \), and \(ED = 5 \), find \(AE \).

\[\frac{AB}{BC} = \frac{AE}{ED} \]

Substitute.
\[\frac{12}{4} = \frac{AE}{5} \]

Solve for \(AE \).
\[AE = \frac{60}{4} = 15 \]

ANSWER: 15
12. If $AC = 14$, $BC = 8$, and $AD = 21$, find ED.

SOLUTION:
Triangle Proportionality Theorem:
If a line is parallel to one side of a triangle and intersects the other two sides, then it divides the sides into segments of proportional lengths.

Here, $BC = 8$. So, $AB = 14 - 8 = 6$. Let x be the length of the segment AE. So, $ED = 21 - x$.

Use the Triangle Proportionality Theorem.
\[
\frac{AB}{BC} = \frac{AE}{ED}
\]

Substitute.
\[
\frac{6}{8} = \frac{x}{21-x}
\]

Solve for x.
\[
6(21-x) = 8x \\
126 - 6x = 8x \\
-14x = -126 \\
x = 9
\]

So, $AE = 9$ and $ED = 21 - 9 = 12$.

ANSWER:
12

13. If $AD = 27$, $AB = 8$, and $AE = 12$, find BC.

SOLUTION:
Triangle Proportionality Theorem:
If a line is parallel to one side of a triangle and intersects the other two sides, then it divides the sides into segments of proportional lengths.

Here, $AE = 12$. So, $ED = 27 - 12 = 15$.

Use the Triangle Proportionality Theorem.
\[
\frac{AB}{BC} = \frac{AE}{ED}
\]

Substitute in values and solve for BC.
\[
\frac{8}{BC} = \frac{12}{15} \\
BC = \frac{120}{12} \\
BC = 10
\]

ANSWER:
10
Determine whether $\overline{VY} \parallel \overline{ZW}$. Justify your answer.

14. $ZX = 18$, $ZV = 6$, $WX = 24$, and $YX = 16$

SOLUTION:
$ZV = 6$ and $YX = 16$. Therefore, $VX = 18 - 6 = 12$ and $WY = 24 - 16 = 8$.

Use the Converse of the Triangle Proportionality Theorem.

$$\frac{ZV}{VX} = \frac{6}{12} = \frac{1}{2}$$

$$\frac{WY}{YX} = \frac{8}{16} = \frac{1}{2}$$

Since $\frac{ZV}{VX} = \frac{WY}{YX} = \frac{1}{2}$, then $\overline{VY} \parallel \overline{ZW}$.

ANSWER:
yes; $\frac{ZV}{VX} = \frac{WY}{YX} = \frac{1}{2}$

15. $VX = 7.5$, $ZX = 24$, $WY = 27.5$, and $WX = 40$

SOLUTION:
$VX = 7.5$ and $WY = 27.5$. So, $ZV = 24 - 7.5 = 16.5$ and $YX = 40 - 27.5 = 12.5$.

Use the Converse of the Triangle Proportionality Theorem.

$$\frac{ZV}{VX} = \frac{16.5}{7.5} = \frac{11}{5}$$

$$\frac{WY}{YX} = \frac{27.5}{12.5} = \frac{11}{5}$$

Since $\frac{ZV}{VX} = \frac{WY}{YX} = \frac{11}{5}$, so $\overline{VY} \parallel \overline{ZW}$.

ANSWER:
yes; $\frac{ZV}{VX} = \frac{WY}{YX} = \frac{11}{5}$

16. $ZV = 8$, $VX = 2$, and $YX = \frac{1}{2} WY$

SOLUTION:
Use the Converse of the Triangle Proportionality Theorem.

$$\frac{ZV}{VX} = \frac{8}{2} = \frac{4}{1}$$

$$\frac{WY}{YX} = \frac{WY}{\frac{1}{2} WY} = WY \cdot \frac{2}{WY} = 2$$

Because $\frac{ZV}{VX} \neq \frac{WY}{YX}$, \overline{VY} and \overline{ZW} are not parallel.

ANSWER:
no; $\frac{ZV}{VX} \neq \frac{WY}{YX}$

17. $WX = 31$, $YX = 21$, and $ZX = 4ZV$

SOLUTION:
$YX = 21$, so $WY = 31 - 21 = 10$ and since $ZX = 4ZV$, then $VX = 3ZV$.

Use the Converse of the Triangle Proportionality Theorem.

$$\frac{ZV}{VX} = \frac{ZV}{3ZV} = \frac{1}{3}$$

$$\frac{WY}{YX} = \frac{10}{21}$$

Because $\frac{ZV}{VX} \neq \frac{WY}{YX}$, we can say that \overline{VY} and \overline{ZW} are not parallel.

ANSWER:
no; $\frac{ZV}{VX} \neq \frac{WY}{YX}$.
\overline{JH}, \overline{JP}, and \overline{PH} are midsegments of $\triangle KLM$. Find the value of x.

18. **SOLUTION:**

By the Triangle Midsegment Theorem, $\overline{JP} \parallel \overline{LM}$.

By the Alternate Interior Angles Theorem, $x = 57$.

ANSWER:

57

19. **SOLUTION:**

By the Triangle Midsegment Theorem, $\overline{PH} \parallel \overline{KL}$.

$m \angle PHJ = 180 - (44 + 76)$

$= 180 - 120$

$= 60$

By the Alternate Interior Angles Theorem, $x = m \angle PHJ = 60$.

ANSWER:

60

20. **SOLUTION:**

By the Triangle Midsegment Theorem, $PH = \frac{1}{2} KM$.

Substitute.

$25 = \frac{1}{2} (KM)$

$KM = 50$

ANSWER:

50

21. **SOLUTION:**

By the Triangle Midsegment Theorem, $PJ = \frac{1}{2} ML$.

Substitute.

$x = \frac{1}{2} (2.7)$

$= 1.35$

ANSWER:

1.35
22. CCSS MODELING In Charleston, South Carolina, Logan Street is parallel to both King Street and Smith Street between Beaufain Street and Queen Street. What is the distance from Smith to Logan along Beaufain? Round to the nearest foot.

\[\text{SOLUTION:} \]
Let \(x \) be the distance from Smith to Logan along Beaufain. Use the Triangle Proportionality Theorem.

\[\frac{x}{398} = \frac{733}{778} \]

Solve for \(x \).

\[x = \frac{653742}{733} \]

\[x = 890.5075 \ldots \]

\[x = 891 \]

So, the distance from Smith to Logan is 891 ft.

\[\text{ANSWER:} \]
about 891 ft

23. ART Tonisha drew the line of dancers shown below for her perspective project in art class. Each of the dancers is parallel. Find the lower distance between the first two dancers.

\[\text{SOLUTION:} \]
Distance between second dancer and third dancer =
\[1 \frac{3}{4} - \left(1 + \frac{1}{3} \right) \]

\[1 \frac{3}{4} - \left(1 + \frac{1}{3} \right) = \frac{7}{4} - \left(3 + \frac{1}{3} \right) \]

\[= \frac{7}{4} - \frac{4}{3} \]

\[= \frac{7 \cdot 3}{4 \cdot 3} - \frac{4 \cdot 4}{3 \cdot 4} \]

\[= \frac{21}{12} - \frac{16}{12} \]

\[= \frac{5}{12} \]

Let \(x \) be the lower distance between the first two dancers.

Use the Triangle Proportionality Theorem.

\[\frac{1}{\frac{5}{12}} = \frac{x}{0.5} \]

\[0.5 \cdot 12 = 5x \]

\[6 = 5x \]

\[\frac{6}{5} = x \]

So, the lower distance between the first two dancers is \(\frac{6}{5} \) or 1.2 inches.

\[\text{ANSWER:} \]
1.2 in.
ALGEBRA Find \(x \) and \(y \).

24.

\[
\begin{align*}
20 - 5x & \quad 3y + 2 \\
2x + 6 & \quad 3y + 2
\end{align*}
\]

\text{SOLUTION:}

We are given that \(y = \frac{3}{5}y + 2 \) and \(2x + 6 = 20 - 5x \).

Solve for \(x \).

\[
2x + 6 = 20 - 5x
\]

\[
7x = 14
\]

\[
x = 2
\]

Solve for \(y \).

\[
y = \frac{3}{5}y + 2
\]

\[
y - \frac{3}{5}y = 2
\]

\[
5\left(y - \frac{3}{5}y\right) = 5(2)
\]

\[
5y - 3y = 10
\]

\[
2y = 10
\]

\[
y = 5
\]

\text{ANSWER:}

\(x = 2; y = 5 \)

25.

\[
\begin{align*}
\frac{1}{3}x + 2 & \quad \frac{1}{2}y
\\\frac{2}{3}x - 4 & \quad \frac{3}{5}y + 8
\end{align*}
\]

\text{SOLUTION:}

We are given that \(5y = \frac{7}{3}y + \xi \) and \(\frac{2}{3}x - 4 = \frac{1}{2}x + 2 \).

Solve for \(x \).

\[
\frac{2}{3}x - 4 = \frac{1}{2}x + 2
\]

\[
\frac{2}{3}x - \frac{1}{2}x = 2 + 4
\]

\[
\frac{1}{3}x = 6
\]

\[
3 \cdot \frac{1}{3}x = 3 \cdot 6
\]

\[
x = 18
\]

Solve for \(y \).

\[
5y = \frac{7}{3}y + 8
\]

\[
5y - \frac{7}{3}y = 8
\]

\[
3\left(5y - \frac{7}{3}y\right) = 3(8)
\]

\[
15y - 7y = 24
\]

\[
8y = 24
\]

\[
y = 3
\]

\text{ANSWER:}

\(x = 18; y = 3 \)
7-4 Parallel Lines and Proportional Parts

ALGEBRA Find \(x \) and \(y \).

\[
\begin{align*}
\frac{1}{5}x + 3 & = 4x - 35 \\
\frac{1}{5}x + 38 & = 4x \\
5\left(\frac{1}{5}x + 38\right) & = 5(4x) \\
x + 190 & = 20x \\
-19x & = -190 \\
x & = 10
\end{align*}
\]

Solve for \(x \).

\[
\begin{align*}
5y - 8 & = 2y + 1 \\
3y & = 9 \\
y & = 3
\end{align*}
\]

\textbf{ANSWER:}
\(x = 10; y = 3 \)

\[
\begin{align*}
\frac{1}{3}y - 6 & = 66 - \frac{2}{3}y \\
\frac{1}{3}y + \frac{2}{3}y & = 66 + 6 \\
\frac{3}{3}y & = 72 \\
y & = 72
\end{align*}
\]

Solve for \(y \).

\[
\begin{align*}
\frac{1}{2}x - 7 & = \frac{1}{4}x + 5 \\
4\left(\frac{1}{2}x - 7\right) & = 4\left(\frac{1}{4}x + 5\right) \\
2x - 28 & = x + 20 \\
2x - x & = 20 + 28 \\
x & = 48
\end{align*}
\]

\textbf{ANSWER:}
\(x = 48; y = 72 \)

\textbf{CCSS ARGUMENTS} Write a paragraph proof.
28. Corollary 7.1

SOLUTION:
In Corollary 7.1, it is stated that, if three or more parallel lines intersect two transversals, then they cut off the transversals proportionally. A good approach to this proof it is apply the Triangle Proportionality theorem, one triangle at a time.

Given: \(\overline{AD} \parallel \overline{BE} \parallel \overline{CF} \)
Prove: \(\frac{AB}{BC} = \frac{DE}{EF} \)

ANSWER:

Given: \(\overline{AD} \parallel \overline{BE} \parallel \overline{CF} \)
Prove: \(\frac{AB}{BC} = \frac{DE}{EF} \)

29. Corollary 7.2

SOLUTION:
Corollary 7.2 states, if three or more parallel lines cut off congruent segments on one transversal, then they cut off congruent segments on every transversal. This proof can be approached by using Corollary 7.1 to establish that, since we have three parallel lines, then we know they cut off the transversals proportionally. If the ratio of one side of this proportion is equal to 1, since both parts are equal, then the other side of the proportion must also equal 1. Therefore, they are also equal, or congruent, parts.

Given: \(\overline{AD} \parallel \overline{BE} \parallel \overline{CF} \), \(\overline{AB} \cong \overline{BC} \)
Prove: \(\overline{DE} \cong \overline{EF} \)

ANSWER:

Given: \(\overline{AD} \parallel \overline{BE} \parallel \overline{CF} \), \(\overline{AB} \cong \overline{BC} \)
Prove: \(\overline{DE} \cong \overline{EF} \)

Proof: From Corollary 7.1, \(\frac{AB}{BC} = \frac{DE}{EF} \). Since \(\overline{AB} \cong \overline{BC} \), \(AB = BC \) by definition of congruence. Therefore, \(\frac{AB}{BC} = 1 \). By substitution, \(1 = \frac{DE}{EF} \). Thus, \(DE = EF \). By definition of congruence, \(\overline{DE} \cong \overline{EF} \).
7-4 Parallel Lines and Proportional Parts

Therefore, \(\frac{AB}{BC} = 1 \). By substitution, \(1 = \frac{DE}{EF} \). Thus, \(DE = EF \). By definition of congruence, \(DE \cong EF \).

30. Theorem 7.5

SOLUTION:
Theorem 7.5 states, if a line is parallel to one side of a triangle and intersects the other two sides, then it divides the sides into segments of proportional lengths. In order to prove that \(\frac{BA}{CB} = \frac{DE}{CD} \), we first need to establish that \(\frac{CA}{CB} = \frac{CE}{CD} \), which can be accomplished by showing that \(\triangle ACE \sim \triangle BCD \). Then, by Segment Addition Postulate, we can state that \(CA = BA + CB \) and \(CE = DE + CD \). Substitute these values in for \(CA \) and \(CE \) in the previous proportion and simplify.

Given: \(\overline{BD} \parallel \overline{AE} \)

Prove: \(\frac{BA}{CB} = \frac{DE}{CD} \)

Proof: \(\overline{BD} \parallel \overline{AE} \). \(\angle 4 \cong \angle 1 \) and \(\angle 3 \cong \angle 2 \) because they are corresponding angles. By AA Similarity, \(\triangle ACE \sim \triangle BCD \). From the definition of similar polygons, \(\frac{CA}{CB} = \frac{CE}{CD} \). By the Segment Addition Postulate, \(CA = BA + CB \) and \(CE = DE + CD \). By substitution, \(\frac{BA + CB}{CB} = \frac{DE + CD}{CD} \). Rewriting as a sum, \(\frac{BA}{CB} + \frac{CB}{CB} = \frac{DE}{CD} + \frac{CD}{CD} \). From simplifying, \(\frac{BA}{CB} + 1 = \frac{DE}{CD} + 1 \). Thus, \(\frac{BA}{CB} = \frac{DE}{CD} \) by subtracting one from each side.

ANSWER:
Given: \(\overline{BD} \parallel \overline{AE} \)

Prove: \(\frac{BA}{CB} = \frac{DE}{CD} \)

Proof: \(\overline{BD} \parallel \overline{AE} \), \(\angle 4 \cong \angle 1 \) and \(\angle 3 \cong \angle 2 \) because they are corresponding angles. By AA Similarity, \(\triangle ACE \sim \triangle BCD \). From the definition of similar polygons, \(\frac{CA}{CB} = \frac{CE}{CD} \). By the Segment Addition Postulate, \(CA = BA + CB \) and \(CE = DE + CD \). By substitution, \(\frac{BA + CB}{CB} = \frac{DE + CD}{CD} \). Rewriting as a sum, \(\frac{BA}{CB} + \frac{CB}{CB} = \frac{DE}{CD} + \frac{CD}{CD} \). From simplifying, \(\frac{BA}{CB} + 1 = \frac{DE}{CD} + 1 \). Thus, \(\frac{BA}{CB} = \frac{DE}{CD} \) by subtracting one from each side.

CCSS ARGUMENTS Write a two-column proof.

31. Theorem 7.6

SOLUTION:
Theorem 7.6 states, if a line intersects two sides of a triangle and separates the sides into proportional corresponding segments, then the line is parallel to the third side of the triangle. Thinking backwards, how can we prove that two lines are parallel to each other? We can prove that \(\overline{DE} \parallel \overline{BC} \) by proving that a pair of corresponding angles, formed by these parallel lines, are congruent to each other. Using SAS Similarity theorem, prove that \(\triangle DEF \sim \triangle CDE \). Then, you can use congruent corresponding angles as a result of similar triangles.

Given: \(\frac{DB}{AD} = \frac{EC}{AE} \)

Prove: \(\overline{DE} \parallel \overline{BC} \)
1. If $XM = 4$, $XN = 6$, and $NZ = 9$, find XY.

Solution: Use the Triangle Proportionality Theorem.

Given: $\triangle ABC$, D is a midpoint of AB, E is a midpoint of AC.

Proof:
Statements (Reasons)
1. $\triangle \frac{DB}{AD} = \frac{EC}{AE}$ (Given)
2. $\frac{AD}{AD} + \frac{DB}{AE} = \frac{AE}{AE} + \frac{EC}{EC}$ (Add. Prop.)
3. $\frac{AD}{AD} + \frac{DB}{AE} = \frac{AE}{AE} + \frac{EC}{EC}$ (Subst.)
4. $AB = AD + DB, AC = AE + EC$ (Seg. Add. Post.)
5. $\frac{AB}{AD} = \frac{AC}{AE}$ (Subst.)
6. $\angle A \equiv \angle A$ (Refl. Prop.)
7. $\triangle ADE \sim \triangle ABC$ (SAS Similarity)
8. $\angle ADE \equiv \angle ABC$ (Def. of \sim polygons)
9. $DE \parallel BC$ (If corr. angles are \equiv, then the lines are \parallel.)

Answer:

Given: $\frac{DB}{AD} = \frac{EC}{AE}$

Prove: $DE \parallel BC$

Proof:

Statements (Reasons)
1. $\triangle \frac{DB}{AD} = \frac{EC}{AE}$ (Given)
2. $\frac{AD}{AD} + \frac{DB}{AE} = \frac{AE}{AE} + \frac{EC}{EC}$ (Add. Prop.)
3. $\frac{AD}{AD} + \frac{DB}{AE} = \frac{AE}{AE} + \frac{EC}{EC}$ (Subst.)
4. $AB = AD + DB, AC = AE + EC$ (Seg. Add. Post.)
5. $\frac{AB}{AD} = \frac{AC}{AE}$ (Subst.)
6. $\angle A \equiv \angle A$ (Refl. Prop.)
7. $\triangle ADE \sim \triangle ABC$ (SAS Similarity)
8. $\angle ADE \equiv \angle ABC$ (Def. of \sim polygons)
9. $DE \parallel BC$ (If corr. angles are \equiv, then the lines are \parallel.)

28. Theorem 7.7

Solution:
Theorem 7.7 states that a midsegment of a triangle is parallel to one side of the triangle, and its length is half the length of that side. For this proof, use the given information that $\triangle \frac{DE}{BC}$ to prove that $\triangle ADE \sim \triangle ABC$ by AA Similarity. Then, since you know that D and E are both midpoints, then you can prove that $\frac{AB}{AD} = 2$, $\frac{AC}{AE} = 2$, using midpoint relationships and substitution. Then, using

$$BC = \frac{AB}{DE}, AD$$

as a result of proving $\triangle ADE \sim \triangle ABC$, then you can substitute into $\frac{AB}{AD} = 2$ into

$$\frac{BC}{DE} = \frac{AB}{AD}$$

and prove that $DE = \frac{1}{2} BC$, using algebra.

Given: D is the midpoint of AB.

E is the midpoint of AC.

Prove: $DE \parallel BC$; $DE = \frac{1}{2} BC$

Proof:

Statements (Reasons)
1. D is the midpoint of AB; E is the midpoint of AC. (Given)
2. $AD \equiv DB, AE \equiv EC$ (Midpoint Thm.)
3. $AD = DB, AE = EC$ (Def. of \equiv segs.)
4. $AB = AD + DB, AC = AE + EC$ (Seg. Add. Post.)
5. $AB = AD + DB, AC = AE + EC$ (Subst.)
6. $AB = 2AD, AC = 2AE$ (Subst.)
7. $\frac{AB}{AD} = \frac{AC}{AE}$ (Div. Prop.)
8. $\frac{AB}{AD} = \frac{AC}{AE}$ (Trans. Prop.)
9. $\angle A \equiv \angle A$ (Refl. Prop.)
10. $\triangle ADE \sim \triangle ABC$ (SAS Similarity)
11. $\angle ADE \equiv \angle ABC$ (Def. of \sim polygons)
12. $DE \parallel BC$ (If corr. angles are \equiv, the lines are parallel.)
13. \(\frac{BC}{DE} = \frac{AB}{AD} \) (Def. of \(\sim \) polygons)
14. \(\frac{BC}{DE} = 2 \) (Substitution Prop.)
15. \(2DE = BC \) (Mult. Prop.)
16. \(DE = \frac{1}{2} BC \) (Division Prop.)

ANSWER:

Given: \(D \) is the midpoint of \(AB \).
\(E \) is the midpoint of \(AC \).

Prove: \(DE \parallel BC \); \(DE = \frac{1}{2} BC \)

Proof:

Statements (Reasons)
1. \(D \) is the midpoint of \(AB \); \(E \) is the midpoint of \(AC \). (Given)
2. \(AD \cong DB \), \(AE \cong EC \) (Midpoint Thm.)
3. \(AD = DB \), \(AE = EC \) (Def. of \(\cong \) segs.)
4. \(AB = AD + DB \), \(AC = AE + EC \) (Seg. Add. Post.)
5. \(AB = AD + AD \), \(AC = AE + AE \) (Subst.)
6. \(AB = 2AD \), \(AC = 2AE \) (Subst.)
7. \(\frac{AB}{AD} = 2 \), \(\frac{AC}{AE} = 2 \) (Div. Prop.)
8. \(\frac{AB}{AD} = \frac{AC}{AE} \) (Trans. Prop.)
9. \(\angle A \cong \angle A \) (Refl. Prop.)
10. \(\triangle ADE \sim \triangle ABC \) (SAS Similarity)
11. \(\angle ADE \cong \angle ABC \) (Def. of \(\sim \) polygons)
12. \(DE \parallel BC \) (If corr. angles are \(\cong \), the lines are parallel.)
13. \(\frac{BC}{DE} = \frac{AB}{AD} \) (Def. of \(\sim \) polygons)
14. \(\frac{BC}{DE} = 2 \) (Substitution Prop.)
15. \(2DE = BC \) (Mult. Prop.)
16. \(DE = \frac{1}{2} BC \) (Division Prop.)

Refer to \(\triangle QRS \).

33. If \(ST = 8 \), \(TR = 4 \), and \(PT = 6 \), find \(QR \).

SOLUTION:

Since \(PT \parallel QR \), we know that \(\angle SPT \cong \angle SQR \) and \(\angle STP \cong \angle SRQ \). Therefore, by AA Similarity, \(\triangle SPT \sim \triangle SQR \).

Use the definition of similar polygons to create a proportion:
\[
\frac{QR}{PT} = \frac{SR}{ST}
\]

We know that \(SR = 8 + 4 = 12 \). Substitute values and solve for \(QR \).

\[
\frac{QR}{6} = \frac{12}{8}
\]

\[
QR = \frac{72}{8}
\]

\[
QR = 9
\]

ANSWER:

9
34. If \(SP = 4, PT = 6, \) and \(QR = 12, \) find \(SQ. \)

SOLUTION:

Since \(\overline{PT} \parallel \overline{QR} \), we know that \(\triangle SPT \cong \triangle SQR \) and \(\angle STP \cong \angle SQR \). Therefore, by AA Similarity, \(\triangle SPT \sim \triangle SQR \).

Use the definition of similar polygons to set up a proportion:

\[
\frac{QR}{PT} = \frac{SQ}{SP}
\]

Substitute and solve for \(SQ \):

\[
\frac{12}{6} = \frac{SQ}{4}
\]

\[
2 = \frac{SQ}{4}
\]

\[
SQ = 8
\]

ANSWER:
8

35. If \(CE = t - 2, EB = t + 1, CD = 2, \) and \(CA = 10, \) find \(t \) and \(CE. \)

SOLUTION:

Triangle Proportionality Theorem:

If a line is parallel to one side of a triangle and intersects the other two sides, then it divides the sides into segments of proportional lengths.

Use the Triangle Proportionality Theorem.

\[
\frac{CE}{CD} = \frac{EB}{DA}
\]

Since \(CA = 10 \) and \(CD = 2 \), then \(DA = 10 - 2 = 8 \).

Substitute and solve for \(t. \)

\[
\frac{t - 2}{t + 1} = \frac{2}{8}
\]

\[
8(t - 2) = 2(t + 1)
\]

\[
8t - 16 = 2t + 2
\]

\[6t = 18\]

\[t = 3\]

Find \(CE. \)

\[
CE = t - 2
\]

\[= 3 - 2\]

\[= 1\]

ANSWER:
3, 1
36. If $WX = 7$, $WY = a$, $WV = 6$, and $VZ = a - 9$, find WY.

SOLUTION:
Triangle Proportionality Theorem:
If a line is parallel to one side of a triangle and intersects the other two sides, then it divides the sides into segments of proportional lengths.

Use the Triangle Proportionality Theorem.

\[
\frac{WX}{XY} = \frac{WV}{VZ}
\]

Since $WY = a$ and $WX = 7$, $XY = a - 7$.

Substitute and solve for a.

\[
\frac{7}{a - 7} = \frac{6}{a - 9}
\]

\[
7(a - 9) = 6(a - 7)
\]

\[
7a - 63 = 6a - 42
\]

\[
a = 21
\]

So, $a = WY = 21$.

ANSWER:
21

37. If $QR = 2$, $XW = 12$, $QW = 15$, and $ST = 5$, find RS and WV.

SOLUTION:
Triangle Proportionality Theorem:
If a line is parallel to one side of a triangle and intersects the other two sides, then it divides the sides into segments of proportional lengths.

Use the Triangle Proportionality Theorem.

\[
\frac{QR}{RS} = \frac{QX}{XW}
\]

Since $QW = 15$ and $WX = 12$, then $QX = 3$.

Substitute and solve for RS.

\[
\frac{2}{RS} = \frac{3}{12}
\]

\[
3RS = 24
\]

\[
RS = 8
\]

Additionally, we know that

\[
\frac{QS}{ST} = \frac{QW}{WV}
\]

Substitute and solve for WV.

\[
10 = \frac{15}{WV}
\]

\[
10WV = 75
\]

\[
WV = 7.5
\]

ANSWER:
8, 7.5

38. If $LK = 4$, $MP = 3$, $PQ = 6$, $KJ = 2$, $RS = 6$, and $LP = 2$, find ML, QR, QK, and JH.

SOLUTION:
Triangle Proportionality Theorem:
7-4 Parallel Lines and Proportional Parts

If a line is parallel to one side of a triangle and intersects the other two sides, then it divides the sides into segments of proportional lengths.

Use the Triangle Proportionality Theorem.
\[
\frac{ML}{LK} = \frac{MP}{PQ}
\]

Substitute and solve for \(ML\).
\[
\frac{4}{6} = \frac{\frac{3}{2}}{QR}
\]

\[
6ML = 12
\]

\[
ML = 2
\]

Also, we know that \(\frac{LK}{JK} = \frac{PQ}{QR}\).

Substitute and solve for \(QR\).
\[
\frac{6}{QR} = \frac{1}{2}
\]

\[
4QR = 12
\]

\[
QR = 3
\]

Because \(\triangle MLP \sim \triangle MKQ\), by AA Similarity, we know that \(\frac{MP}{PL} = \frac{MO}{QK}\).

Substitute and solve for \(QK\).
\[
\frac{\frac{3}{2}}{QK} = \frac{9}{QK}
\]

\[
3QK = 18
\]

\[
QK = 6
\]

Finally, by Triangle Proportionality Theorem, \(\frac{KJ}{JH} = \frac{QR}{RS}\). Substitute and solve for \(JH\).
\[
\frac{2}{JH} = \frac{3}{6}
\]

\[
3JH = 12
\]

\[
JH = 4
\]

\[\text{\textbf{ANSWER: 2, 3, 6, 4}}\]

39. MATH HISTORY
The sector compass was a tool perfected by Galileo in the sixteenth century for measurement. To draw a segment two-fifths the length of a given segment, align the ends of the arms with the given segment. Then draw a segment at the 40 mark. Write a justification that explains why the sector compass works for proportional measurement.

\[
\text{SOLUTION:}
\]

To prove that two corresponding sides of two triangles are the same ratio as another pair of corresponding sides, you need to first establish that the triangles are similar. Once this is completed, a proportion statement can be written, relating the proportional sides. Substitute in given values from the diagram to prove that
\[
\frac{2}{5}BC = DE
\]
1. If $XM = 4$, $XN = 6$, and $NZ = 9$, find XY.

SOLUTION:

Triangle Proportionality Theorem:

If a line is parallel to one side of a triangle and intersects the other two sides, then it divides the sides into segments of proportional lengths.

Determine the value of x so that $BC \parallel DF$.

SOLUTION:

Triangle Proportionality Theorem:

If a line is parallel to one side of a triangle and intersects the other two sides, then it divides the sides into segments of proportional lengths.

Use the Triangle Proportionality Theorem.

$$\frac{AB}{AC} = \frac{BC}{CF}$$

Substitute.

$$\frac{x + 5}{12} = \frac{3x + 1}{15}$$

$15x + 75 = 36x + 12$

$21x = 63$

$x = 3$

ANSWER:

3
41. \(AC = 15 \), \(BD = 3x - 2 \), \(CF = 3x + 2 \), and \(AB = 12 \)

SOLUTION:

Triangle Proportionality Theorem:
If a line is parallel to one side of a triangle and intersects the other two sides, then it divides the sides into segments of proportional lengths.

Use the Triangle Proportionality Theorem.
\[\frac{AB}{BC} = \frac{AC}{CF} \]

Substitute.
\[\frac{12}{3x-2} = \frac{15}{3x+2} \]

Solve for \(x \).
\[36x + 24 = 45x - 30 \]

\[9x = 54 \]

\[x = 6 \]

ANSWER:
6

42. **COORDINATE GEOMETRY** \(\triangle ABC \) has vertices \(A(-8, 7) \), \(B(0, 1) \), and \(C(7, 5) \). Draw \(\triangle ABC \). Determine the coordinates of the midsegment of \(\triangle ABC \) that is parallel to \(BC \). Justify your answer.

SOLUTION:

Use the midpoint formula \(\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2} \right) \) to determine the midpoints of \(AB \) and \(AC \).

The midpoint of \(AB = \left(\frac{-8+0}{2}, \frac{7+1}{2} \right) = (-4, 4) \).

The midpoint of \(AC = \left(\frac{-8+7}{2}, \frac{7+5}{2} \right) = (-0.5, 6) \).

The endpoints of the midsegment are \((-4, 4) \) and \((-0.5, 6) \). Sample answer: The segment is parallel to \(BC \) because the slopes are both \(\frac{4}{7} \) and the segment length is half of \(BC \). Thus, the segment is the midsegment of \(\triangle ABC \).
43. **HOUSES** Refer to the diagram of the gable. Each piece of siding is a uniform width. Find the lengths of $\overline{FG}, \overline{EH},$ and \overline{DJ}.

SOLUTION:

All the triangles are isosceles. Segment EH is the midsegment of triangle ABC. Therefore, segment EH is the half of the length of AC, which is $35 \div 2$ or 17.5 feet. Similarly, FG is the midsegment of triangle BEH, so $FG = 17.5 \div 2$ or 8.75 feet.

To find DJ, use the vertical altitude which is 12 feet. Let the altitude from B to the segment AC meet the segment DJ at K. Find BC using the Pythagorean Theorem.

$$BC^2 = BK^2 + KC^2$$

$$BC^2 = 12^2 + 17.5^2$$

$$BC \approx 21.22 \text{ in.}$$

Since the width of each piece of siding is the same,

$$BJ = \frac{3}{4} BC,$$

which is about $\frac{3}{4} (21.22)$ or 15.92 in.

Now, use the Triangle Proportionality Theorem.

$$\frac{AC}{BC} = \frac{DJ}{BJ}$$

$$\frac{35}{21.22} = \frac{DJ}{15.92}$$

$$21.22(DJ) = (15.92)(35)$$

$$DJ \approx 26.25 \text{ in.}$$

ANSWER:

8.75 in., 17.5 in., 26.25 in.

CONSTRUCTIONS Construct each segment as directed.

44. a segment separated into five congruent segments

SOLUTION:

Step 1: Construct an angle with vertex A, as shown below:

Step 2: With your compass on vertex A, choose a radius and make an arc on the diagonal, as shown below:

Step 3: With your compass on the new point formed on the diagonal, keep the same radius and make another arc further down the diagonal side of the angle. Continue this process until you have five arcs, like below:

Step 4: Using a straight edge, draw a segment that connects each new point back to the horizontal side of the angle, perpendicular to that side, as shown below:

Step 5. Label the points formed on the horizontal side of the angle and erase any extra length beyond the
7-4 Parallel Lines and Proportional Parts

last point.

ANSWER:
Sample answer:

45. a segment separated into two segments in which their lengths have a ratio of 1 to 3

SOLUTION:
Step 1: Make an angle, with vertex A, as shown below:

Step 2: With your compass on vertex A, make an arc that passes through the diagonal side of the angle. Connect this new point back to the horizontal side of the angle. Label B as the new point made on the horizontal side of the angle, as shown below.

Step 3: Continue this process until you have four arcs. When you connect the points on the diagonal back to the horizontal, make sure the connecting lines are all parallel to each other. (Since you want segment lengths at a ratio of 1 to 3, this can be created by 4 equal smaller segments, where three can be pieced together to make one that is 3/4 the original length.)

ANSWER:
Sample answer:

46. a segment 3 inches long, separated into four congruent segments

SOLUTION:
Step 1: Copy a 3 inch segment horizontally. Then, make an angle, with vertex A, as shown below:
Step 2: With your compass on vertex A, make an arc that passes through the diagonal side of the angle. Connect this new point back to the horizontal side of the angle. Label B as the new point made on the horizontal side of the angle, as shown below.

Step 3: Continue this process until you have four arcs. When you connect the points on the diagonal back to the horizontal, make sure the connecting lines are all parallel to each other.

Step 4: Label the points as shown. \(AB = BC = CD = DE \)

ANSWER:
Sample answer:

47. MULTIPLE REPRESENTATIONS In this problem, you will explore angle bisectors and proportions.

a. **GEOMETRIC** Draw three triangles, one acute, one right, and one obtuse. Label one triangle \(ABC \) and draw angle bisector \(BD \). Label the second \(MNP \) with angle bisector \(NQ \) and the third \(WXY \) with angle bisector \(XZ \).

b. **TABULAR** Complete the table at the right with the appropriate values.

c. **VERBAL** Make a conjecture about the segments of a triangle created by an angle bisector.

<table>
<thead>
<tr>
<th>Triangle</th>
<th>Length</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ABC)</td>
<td>(AD)</td>
<td>(AD)</td>
</tr>
<tr>
<td>(CD)</td>
<td>(CD)</td>
<td></td>
</tr>
<tr>
<td>(AB)</td>
<td>(AB)</td>
<td></td>
</tr>
<tr>
<td>(CB)</td>
<td>(CB)</td>
<td></td>
</tr>
<tr>
<td>(MNP)</td>
<td>(MQ)</td>
<td>(MQ)</td>
</tr>
<tr>
<td>(PQ)</td>
<td>(PQ)</td>
<td></td>
</tr>
<tr>
<td>(MN)</td>
<td>(MN)</td>
<td></td>
</tr>
<tr>
<td>(PN)</td>
<td>(PN)</td>
<td></td>
</tr>
<tr>
<td>(WXY)</td>
<td>(WZ)</td>
<td>(WZ)</td>
</tr>
<tr>
<td>(YZ)</td>
<td>(YZ)</td>
<td></td>
</tr>
<tr>
<td>(WX)</td>
<td>(WX)</td>
<td></td>
</tr>
<tr>
<td>(YX)</td>
<td>(YX)</td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION:

a. When drawing the triangles, pay close attention to the directions and labeling instructions. Use a protractor, or construction tool, when making the angle bisectors, to ensure accurate measurement values for the table.

Sample answer:
b. Carefully measure the indicated lengths in centimeters.

<table>
<thead>
<tr>
<th>Triangle</th>
<th>Length</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AD 1.1 cm</td>
<td>AD CD 1.0</td>
</tr>
<tr>
<td></td>
<td>CD 1.1 cm</td>
<td>CD CD 1.0</td>
</tr>
<tr>
<td></td>
<td>AB 2.0 cm</td>
<td>AB CB 1.0</td>
</tr>
<tr>
<td></td>
<td>CB 2.0 cm</td>
<td>CB CB 1.0</td>
</tr>
<tr>
<td>MNP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MQ 1.4 cm</td>
<td>MQ PQ 0.8</td>
</tr>
<tr>
<td></td>
<td>PQ 1.7 cm</td>
<td>PQ PQ 0.8</td>
</tr>
<tr>
<td></td>
<td>MN 1.6 cm</td>
<td>MN PN 0.8</td>
</tr>
<tr>
<td></td>
<td>PN 2.0 cm</td>
<td>PN PN 0.8</td>
</tr>
<tr>
<td>WXYZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WZ 0.8 cm</td>
<td>WZ YZ 0.7</td>
</tr>
<tr>
<td></td>
<td>YZ 1.2 cm</td>
<td>YZ YZ 0.7</td>
</tr>
<tr>
<td></td>
<td>WX 2.0 cm</td>
<td>WX YX 0.7</td>
</tr>
<tr>
<td></td>
<td>YX 2.9 cm</td>
<td>YX YX 0.7</td>
</tr>
</tbody>
</table>

c. Look for a pattern in the table, specifically comparing the lengths of the ratios of sides for each triangle.

Sample answer: The proportion of the segments created by the angle bisector of a triangle is equal to the proportion of their respective consecutive sides.

ANSWER:

a. Sample answer:
48. **CCSS CRITIQUE** Jacob and Sebastian are finding the value of \(x \) in \(\triangle JHL \). Jacob says that \(MP \) is one half of \(JL \), so \(x \) is 4.5. Sebastian says that \(JL \) is one half of \(MP \), so \(x \) is 18. Is either of them correct? Explain.

SOLUTION:
Jacob; sample answer: Since \(M \) is the midpoint of \(\overline{JH} \) and \(P \) is the midpoint of \(\overline{HL} \), then \(MP \) is the midsegment of \(\triangle JHL \). Therefore,

\[
MP = \frac{1}{2} JL
\]

ANSWER:
Jacob; sample answer: \(MP \) is the midsegment, so \(MP = \frac{1}{2} JL \).

49. **REASONING** In \(\triangle ABC \), \(AF = FB \) and \(AH = HC \).

If \(D \) is \(\frac{3}{4} \) of the way from \(A \) to \(B \) and \(E \) is \(\frac{3}{4} \) of the way from \(A \) to \(C \), is \(DE \) sometimes, always, or never \(\frac{3}{4} \) of \(BC \)? Explain.

SOLUTION:
Always; sample answer: Since \(FA=FB \), then \(F \) is a midpoint of \(\overline{AB} \). Similarly, since \(AH=HC \) and \(H \) is the midpoint of \(\overline{AC} \),

\[
\overline{FH} \parallel \overline{BC}
\]

Therefore, \(FH \) is a midsegment of \(\triangle ABC \) so \(\overline{FH} \parallel \overline{BC} \) and \(FH = \frac{1}{2} BC \).

Let \(BC = x \), then \(FH = \frac{1}{2} x \).

Because \(\overline{FH} \parallel \overline{BC} \), we know that \(FHCB \) is a trapezoid, so

\[
DB = \frac{1}{2}(BC + FH)
\]

ANSWER:
Always; sample answer: \(FH \) is a midsegment. Let \(BC = x \), then \(FH = \frac{1}{2} x \). \(FHCB \) is a trapezoid, so

\[
DE = \frac{1}{2}(BC + FH) = \frac{1}{2}(x + \frac{1}{2}x) = \frac{1}{2}x + \frac{1}{4}x = \frac{3}{4} x.
\]

Therefore,

\[
DE = \frac{3}{4} BC
\]

CHALLENGE Write a two-column proof.

50. Given: \(AB = 4 \), \(BC = 4 \), and \(CD = DE \)
7-4 Parallel Lines and Proportional Parts

Prove: \(BD \parallel AE \)

![Diagram of triangle ABC with points A, B, C, D, and E]

SOLUTION:
An effective strategy for this proof is to think of a way to get \(\triangle AEC \sim \triangle BCD \), by SAS Similarity. We already know that \(\angle C \equiv \angle C \), so we need to establish that \(\frac{AC}{BC} = \frac{EC}{DC} \). You can show that \(2BC = AC \) and \(2DC = EC \), through the given information and substitution into Segment Addition Postulate statements. Once this is done, you can prove that \(\frac{AC}{EC} = \frac{BC}{DC} \) by transitive property. Once the triangles are proven similar, then the lines can be proven parallel by choosing a pair of congruent corresponding angles from the similar triangles.

Proof:

Statements (Reasons)

1. \(AB = 4, BC = 4 \) (Given)
2. \(AB = BC \) (Subst.)
3. \(AB + BC = AC \) (Seg. Add. Post.)
4. \(BC + BC = AC \) (Subst.)
5. \(2BC = AC \) (Subtraction property.)
6. \(AC = 2BC \) (Symm. Prop.)
7. \(\frac{AC}{BC} = 2 \) (Div. Prop.)
8. \(ED = DC \) (Given)
9. \(ED + DC = EC \) (Seg. Add. Post.)
10. \(DC + DC = EC \) (Subst.)
11. \(2DC = EC \) (Subst.)
12. \(2 = \frac{EC}{DC} \) (Div. Prop.)
13. \(\frac{AC}{BC} = \frac{EC}{DC} \) (Trans. Prop.)
14. \(\angle C \equiv \angle C \) (Reflexive Prop.)
15. \(\triangle AEC \sim \triangle BCD \) (SAS Similarity)
16. \(\angle CAE \equiv \angle CBD \) (Def. of \(~\) polygons)
17. \(BD \parallel AE \) (If corr. angles are \(\equiv \), lines are \(\parallel \)).

ANSWER:

Proof:

Statements (Reasons)
51. **OPEN ENDED** Draw three segments, \(a, b,\) and \(c,\) of all different lengths. Draw a fourth segment, \(d,\) such that \(\frac{a}{b} = \frac{c}{d}.\)

SOLUTION:
By Corollary 7.1, we know that if we draw three parallel lines intersected by two transversals, then they will cut the transversals proportionally or \(\frac{a}{b} = \frac{c}{d},\) as seen in the diagram below.

![Diagram of parallel lines and transversals](image)

ANSWER:
By Corollary 7.1, \(\frac{a}{b} = \frac{c}{d}.\)

52. **WRITING IN MATH** Compare the Triangle Proportionality Theorem and the Triangle Midsegment Theorem.

SOLUTION:
Both theorems deal with a parallel line inside the triangle. The Midsegment Theorem is a special case of the Converse of the Proportionality Theorem.

ANSWER:
Both theorems deal with a parallel line inside the triangle. The Midsegment Theorem is a special case of the Converse of the Proportionality Theorem.

53. **SHORT RESPONSE** What is the value of \(x?\)

![Figure with \(3x + 2\) and \(4x - 6\)]

SOLUTION:
By Corollary 7.2, \(4x - 6 = 3x + 2.\)

Solve for \(x.\)

\[4x - 6 = 3x + 2\]
\[x - 6 = 2\]
\[x = 8\]

ANSWER:
8

54. If the vertices of triangle \(JKL\) are (0, 0), (0, 10) and (10, 10) then the area of triangle \(JKL\) is

A 20 units\(^2\)
B 30 units\(^2\)
C 40 units\(^2\)
D 50 units\(^2\)

SOLUTION:
Area of triangle \(JKL = \frac{1}{2} \times \text{base} \times \text{height}\)
\[= \frac{1}{2} \times 10 \times 10\]
\[= 50\]

So, the correct choice is D.

ANSWER:
D
55. **ALGEBRA** A breakfast cereal contains wheat, rice, and oats in the ratio 2 : 4 : 1. If the manufacturer makes a mixture using 110 pounds of wheat, how many pounds of rice will be used?

- F 120 lb
- G 220 lb
- H 240 lb
- J 440 lb

SOLUTION:
Since the ratio of rice to wheat is 4:2, we can set up a proportion to find the amount of rice needed for 110 pounds of wheat.

\[
\frac{\text{rice ratio}}{\text{wheat ratio}} = \frac{\text{amount of rice (lbs)}}{\text{amount of wheat (lbs)}}
\]

\[
\frac{4}{2} = \frac{x}{110}
\]

\[440 = 2x\]

\[220 = x\]

The correct answer is G, 220 lb.

ANSWER:
G

56. **SAT/ACT** If the area of a circle is 16 square meters, what is its radius in meters?

A \(\frac{4\sqrt{\pi}}{\pi}\)

B \(\frac{8}{\pi}\)

C \(\frac{16}{\pi}\)

D \(12\pi\)

E \(16\pi\)

SOLUTION:
Since the area of a circle can be found with \(A = \pi r^2\), we can substitute 16 for the area (A) and solve for \(r\).

\[16 = \pi r^2\]

\[\frac{16}{\pi} = r^2\]

\[\sqrt{\frac{16}{\pi}} = r\]

\[\frac{4}{\sqrt{\pi}} = r\]

\[\frac{4\sqrt{\pi}}{\sqrt{\pi} \cdot \sqrt{\pi}} = r\]

\[4\sqrt{\pi} = r\]

Therefore, the answer is A.

ANSWER:
A
ALGEBRA Identify the similar triangles. Then find the measure(s) of the indicated segment(s).

57. \(AB \)

\[\triangle ABC \]

\[\overline{AB} \]

\[\angle AEB \cong \angle CED \] by the Vertical Angles Theorem.

Since \(AB \parallel CD \), \(\angle ABE \cong \angle CDE \) by the Alternate Interior Angles Theorem.

Therefore, by AA Similarity, \(\triangle ABE \sim \triangle CDE \).

To find \(AB \) or \(x \), write a proportion using the definition of similar polygons.

\[
\frac{AB}{CD} = \frac{AE}{CE}
\]

\[
\frac{x}{10} = \frac{5}{8}
\]

\[
x = \frac{50}{8} \text{ or } 6.25
\]

ANSWER:
\(\triangle ABE \sim \triangle CDE \) by AA Similarity; \(6.25 \)

58. \(\overline{RT}, \overline{RS} \)

\[\triangle SWR \cong \triangle RWT \], since right angles are congruent. \(\frac{SW}{RW} = \frac{RW}{TW} \), since \(\frac{16}{12} = \frac{12}{9} \).

Therefore, by SAS Similarity, \(\triangle RSW \sim \triangle TRW \).

Write a proportion using the definition of similar polygons to find the value of \(x \).

\[
\frac{SR}{SW} = \frac{RT}{RW}
\]

\[
\frac{6x + 2}{16} = \frac{4x + 3}{12}
\]

\[
9(6x + 2) = 12(4x + 3)
\]

\[
54x + 18 = 48x + 36
\]

\[
6x + 18 = 36
\]

\[
6x = 18
\]

\[
x = 3
\]

Substitute this value for \(x \) to find \(RT \) and \(RS \).

\[RT = 4x + 3 \quad RS = 6x + 2 \]

\[= 4(3) + 3 \quad = 6(3) + 2 \text{ or } 20 \]

ANSWER:
\(\triangle RSW \sim \triangle TRW \) by SAS Similarity; \(15, 20 \)
59. \(\overline{TY} \)

\[\begin{align*}
\angle W & \equiv \angle W \text{ by the Reflexive Property of Congruence.} \\
\text{Since } \overline{ZT} & \parallel \overline{XY}, \angle WZT & \equiv \angle WXY \text{ by the Corresponding Angles Theorem.} \\
\text{Therefore, by AA Similarity, } \triangle WZT & \sim \triangle WXY.
\end{align*} \]

Write a proportion using the definition of similar polygons to find the value of \(x \).

\[\frac{x}{20} = \frac{10}{16} \]

\[x = \frac{200}{16} \]

\[x = 12.5 \]

So, \(WT = 12.5 \). \(WT + TY = WY \) by the Segment Addition Postulate. Since \(WY = 20 \), you can solve for \(TY \).

\[WT + TY = WY \]

\[12.5 + TY = 20 \]

\[TY = 7.5 \]

\textbf{ANSWER:}

\(\triangle WZT \sim \triangle WXY \) by AA Similarity; 7.5

60. \textbf{SURVEYING} Mr. Turner uses a carpenter’s square to find the distance across a stream. The carpenter’s square models right angle \(NOL \). He puts the square on top of a pole that is high enough to sight along \(OL \) to point \(P \) across the river. Then he sights along \(ON \) to point \(M \). If \(MK \) is 1.5 feet and \(OK \) is 4.5 feet, find the distance \(KP \) across the stream.

\[\text{SOLUTION:} \]

By AA Similarity, \(\triangle MOP \sim \triangle MKO \).

Use the Pythagorean Theorem to find \(MO \).

\[MO^2 = MK^2 + KO^2 \]

\[MO^2 = (1.5)^2 + (4.5)^2 \]

\[MO^2 = 2.25 + 20.25 \]

\[MO^2 = 22.5 \]

\[MO = \sqrt{22.5} \approx 4.74 \text{ ft} \]

Write a proportion using corresponding sides of the two triangles:

\[\frac{MP}{MO} = \frac{OM}{MK} \]

\[\frac{MK + KP}{4.74} = \frac{4.74}{1.5} \]

\[\frac{1.5 + KP}{4.74} = \frac{4.74}{1.5} \]

\[1.5(1.5 + KP) = 4.74 \cdot 4.74 \]

\[2.25 + 1.5KP = 22.47 \]

\[1.5KP = 20.22 \]

\[KP = 13.48 \]

Therefore, the distance \(KP \) is about 13.5 feet.

\textbf{ANSWER:}

13.5 ft

\textbf{COORDINATE GEOMETRY} For each quadrilateral with the given vertices, verify that the quadrilateral is a trapezoid and determine...
whether the figure is an isosceles trapezoid.

61. \(Q(-12, 1), R(-9, 4), S(-4, 3), T(-11, -4)\)

SOLUTION:

![Diagram of quadrilateral QRTS](image)

Use the slope formula to find the slope of the sides of the quadrilateral.

\[
m_{QR} = \frac{4 - 1}{-9 - (-12)} = \frac{3}{3} = 1
\]

\[
m_{RS} = \frac{3 - 4}{-4 - (-9)} = -\frac{1}{5}
\]

\[
m_{ST} = \frac{-4 - 3}{-11 - (-4)} = -\frac{7}{7} = 1
\]

\[
m_{TQ} = \frac{-4 - 1}{-11 - (-12)} = -\frac{5}{1}
\]

The slopes of exactly one pair of opposite sides are equal. So, this quadrilateral has only one pair of parallel sides. Therefore, the quadrilateral \(QRST\) is a trapezoid.

Use the Distance Formula to find the lengths of the legs of the trapezoid.

\[
QR = \sqrt{(-4 - (-5))^2 + (3 - 6)^2} = \sqrt{5^2 + (-3)^2} = \sqrt{25 + 9} = \sqrt{34}
\]

\[
QT = \sqrt{(-11 - (-12))^2 + (-4 - 0)^2} = \sqrt{1^2 + (-4)^2} = \sqrt{1 + 16} = \sqrt{17}
\]

The lengths of the legs are not equal. Therefore, \(ABCD\) is not an isosceles trapezoid.

ANSWER:

\(\overline{QR} \parallel \overline{TS}, \overline{QT} \parallel \overline{RS}; \triangle QST\) is an isosceles trapezoid since \(RS = \sqrt{26} = QT\).

62. \(A(-3, 3), B(-4, -1), C(5, -1), D(2, 3)\)

SOLUTION:

![Diagram of quadrilateral ABCD](image)

Use the slope formula to find the slope of the sides of the quadrilateral.

\[
m_{AB} = \frac{-1 - 3}{-4 - (-3)} = -\frac{4}{-1} = 4
\]

\[
m_{BC} = \frac{-1 - (-1)}{5 - (-4)} = \frac{0}{9} = 0
\]

\[
m_{CD} = \frac{3 - (-1)}{2 - 5} = \frac{4}{-3} = -\frac{4}{3}
\]

\[
m_{DA} = \frac{3 - 3}{2 - (-3)} = \frac{0}{1} = 0
\]

The slopes of exactly one pair of opposite sides are equal. So, they are parallel. Therefore, the quadrilateral \(ABCD\) is a trapezoid.

Use the Distance Formula to find the lengths of the legs of the trapezoid.

\[
AB = \sqrt{(-4 - (-3))^2 + (-1 - 3)^2} = \sqrt{1^2 + (-4)^2} = \sqrt{1 + 16} = \sqrt{17}
\]

\[
CD = \sqrt{(2 - 5)^2 + (3 - (-1))^2} = \sqrt{(-3)^2 + (4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5
\]

The lengths of the legs are not equal. Therefore, \(ABCD\) is a trapezoid, but not isosceles since \(AB = \sqrt{17}\) and \(CD = 5\).

ANSWER:

\(\overline{AD} \parallel \overline{BC}, \overline{CD} \parallel \overline{AB}; \triangle ABCD\) is a trapezoid, but not isosceles since \(AB = \sqrt{17}\) and \(CD = 5\).
Point S is the incenter of $\triangle JPL$. Find each measure.

63. SQ

SOLUTION:
Since S is the incenter of $\triangle JPL$, then it is formed by the angle bisectors of each vertex. JS is the angle bisector of $\angle P\angle L$ therefore, by the Angle Bisector Theorem, $SK=SQ$.

Use Pythagorean Theorem in the right triangle JSK.

$$SK^2 + 8^2 = 10^2$$
$$SK^2 + 64 = 100$$
$$SK^2 = 36$$
$$SK = \sqrt{36} = 6$$

$SK = SQ = 6$

ANSWER:
6

64. QJ

SOLUTION:
Since S is the incenter of $\triangle JPL$, then it is formed by the angle bisectors of each vertex. JS is the angle bisector of $\angle P\angle L$, therefore, by the Angle Bisector Theorem, $SK = SQ$.

Use Pythagorean Theorem in the right triangle JSQ to find QJ.

$$QJ^2 + 6^2 = 10^2$$
$$QJ^2 + 36 = 100$$
$$QJ^2 = 64$$
$$QJ = \sqrt{64} = 8$$

Therefore $QJ = 8$.

ANSWER:
8

65. $m\angle MPQ$

SOLUTION:
Since S is the incenter of $\triangle JPL$, then it is formed by the angle bisectors of each vertex. PS is the angle bisector of $\angle MPQ$.

Therefore, $m\angle SPQ = m\angle SPM = 28^\circ$.

$m\angle MPQ = m\angle SPQ + m\angle SPM = 56$

ANSWER:
56
66. \(m_\angle SJP \)

SOLUTION:
Since S is the incenter of \(\triangle JPL \) then it is formed by the angle bisectors of each vertex. \(PS \) is the angle bisector of \(\angle MPQ \).

Therefore, \(m_\angle SPM = m_\angle SPM = 28^\circ \).

\[m_\angle MPQ = m_\angle SPQ + m_\angle SPM = 56 \]

and similarly,

\[m_\angle JLP = m_\angle JLQ + m_\angle QLP \\
= 24.5 + 24.5 \\
= 49 \]

We know that sum of the measures of a triangle is 180.

\[m_\angle JLP + m_\angle JPL + m_\angle PJI = 180 \\
49 + 56 + m_\angle PJI = 180 \\
105 + m_\angle PJI = 180 \\
m_\angle PJI = 75 \]

\[m_\angle PJI = m_\angle PJM + m_\angle MJL \]

We know that \(\angle P JM \approx \angle M JL \) because \(JM \) is an angle bisector of \(\angle P JL \). Therefore,

\[75 = m_\angle PJM + m_\angle PJM \]

\[37.5 = m_\angle PJM \]

\[m_\angle PJM = m_\angle MJP = m_\angle SJP = 37.5 \]

ANSWER:
37.5

67. \(\frac{1}{3} = \frac{x}{2} \)

SOLUTION:
Solve for \(x \).

\[\frac{1}{3} = \frac{x}{2} \]

\[3x = 2 \]

\[x = \frac{2}{3} \]

ANSWER:
\(\frac{2}{3} \)

68. \(\frac{3}{4} = \frac{5}{x} \)

SOLUTION:
Solve for \(x \).

\[\frac{3}{4} = \frac{5}{x} \]

\[3x = 20 \]

\[x = \frac{20}{3} \]

\[x \approx 6.7 \]

ANSWER:
6.7

69. \(\frac{2.3}{4} = \frac{x}{3.7} \)

SOLUTION:
Solve for \(x \).

\[\frac{2.3}{4} = \frac{x}{3.7} \]

\[4x = 8.51 \]

\[x = \frac{8.51}{4} \]

\[x \approx 2.1 \]

ANSWER:
2.1
7-4 Parallel Lines and Proportional Parts

70. \(\frac{x - 2}{2} = \frac{4}{5} \)

SOLUTION:
Solve for \(x \).

\[
\frac{x - 2}{2} = \frac{4}{5} \\
5(x - 2) = 8 \\
5x - 10 = 8 \\
5x = 18 \\
x = 3.6
\]

ANSWER:
3.6

71. \(\frac{x}{12 - x} = \frac{8}{3} \)

SOLUTION:
Solve for \(x \).

\[
\frac{x}{12 - x} = \frac{8}{3} \\
3x = 8(12 - x) \\
3x = 96 - 8x \\
11x = 96 \\
x \approx 8.7
\]

ANSWER:
8.7